# novotechnik 

Siedle Group

## NOVOHALL <br> Rotary Sensor touchless technology transmissive

Series RFC-4800


## Special features

- Touchless hall technology
- Electrical range up to $360^{\circ}$
- 2-part, mechanically decoupled
- High protection class, IP67, IP6K9K
- Resolution up to 14 Bit
- Wear-free
- Temperature range $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
- Single and multi-channel versions
- Optimized for use in industrial and mobile applications
- Interfaces: Voltage, current, SSI, incremental, CANopen, SPI
- Customized versions

Siedle Group

## Contents

Drawings ..... 3
Mechanical Data ..... 4
Characteristics ..... 5
Analog Versions for Industrial ApplicationsTechnical Data6
Ordering Specifications ..... 7
Analog Versions for Mobile Applications
Technical Data ..... 8
Ordering Specifications ..... 9
Digital Versions
SSI ..... 10
Incremental ..... 11
SPI ..... 14
Ordering Specifications ..... 15
Fieldbus Versions
CANopen ..... 16
Ordering specifications ..... 17
Accessories
Position Markers ..... 18
M12 Connector System ..... 21
Displays ..... 24
Customized Versions
Connecting Options ..... 25

# novotechnik 

Siedle Group

## Drawings



Pin assignment M12 connector


A-coded

Pin assignment M12 connector


A-coded


A-coded

CAD data see
www.novotechnik.de/en/ download/cad-data/

Siedle Group

## Mechanical Data



Siedle Group

Characteristics

One channel, cw


Crossed characteristics, channel 1 cw


## On request:

Trapeze characteristic


On request:
2 staggered characteristics


One channel, ccw


On request:
two channel, signal $2=0.5 \times$ signal 1


## On request:

different gradients


On request:
Parabolic characteristic


Siedle Group

Technical Data analog Versions<br>for Industrial<br>Applications

Technical Data - Versions for Industrial Applications
Design optimized for use in machine and plant engineering. High reliability, simple interface to PLC, high variety.


Connection assignment

| One-channel versions |  |  |  |
| :--- | :--- | :--- | :--- |
| Signal | Lead wires | Cable | M12 |
| Supply voltage Ub | Red | Green | 1 |
| GND | Black | Brown | 3 |
| Signal output | Blue | White | 2 |
| Shield | - | Shield | Shield |
| Not assigned | - | Yellow | 4 |


| Redundant versions |  |  |  |
| :--- | :--- | :--- | :--- |
| Signal | Lead wires | Cable | M12 |
| Supply voltage Ub 1 | Red | Green | 1 |
| GND 1 | Black | Brown | 3 |
| Signal output 1 | Blue | White | 2 |
| Supply voltage Ub 2 | Red/White | - | - |
| GND 2 | Black/White | - | - |
| Signal output 2 | Blue/White | Yellow | 4 |
| Shield | - | Shield | Shield |

Siedle Group

Ordering<br>specifications -<br>analog Versions<br>- Voltage<br>- Current<br>for Industrial<br>Applications

Ordering specifications for Industrial Applications

Preferred types printed in bold:

- Delivery time up to 25 pcs. within 10 working days
- No low volume surcharge

Supply voltage
1: Supply voltage $\mathrm{Ub}=24 \mathrm{~V}(18 \ldots 30 \mathrm{~V})$
2: Supply voltage $\mathrm{Ub}=5 \mathrm{~V}(4.5 \ldots 5.5 \mathrm{~V})$
Output signal supply voltage $\mathrm{Ub}=24 \mathrm{~V}$
1: $0.1 \ldots 10 \mathrm{~V}$ (only one-channel)
2: $4 \ldots 20 \mathrm{~mA}$ (only one-channel)
Output signal supply voltage $\mathrm{Ub}=5 \mathrm{~V}$
1: 0.25 ...4.75 V ratiometric to supply voltage Ub
2: $0.5 \ldots 4.5 \mathrm{~V}$ ratiometric to supply voltage Ub

Output characteristics
1: Rising CW
2: Rising CCW
3: Crossed output channel 1 rising CW (partly redundant)

Electrical connections
201: Cable 4-pol., $0,5 \mathrm{~m}$ shielded 202: Cable 4-pol., 1 m shielded 206: Cable 4-pol., 3 m shielded 210: Cable 4-pol., 5 m shielded 220: Cable 4 -pol., 10 m shielded 501: M12 connector 4-pin, with cable, $L=0.15 \mathrm{~m}$, shielded Cable versions and assembled connectors on request


Siedle Group

Technical Data -<br>Analog Versions<br>- Voltage<br>- Current<br>for Mobile Applications

## Technical Data - Versions for Mobile Applications

These versions are optimzed for the high requirements in mobile applications.


Connection assignment

| One-channel versions |  |  |  |
| :--- | :--- | :--- | :--- |
| Signal | Lead wires | Cable | M12 |
| Supply voltage Ub | Red | Green | 1 |
| GND | Black | Brown | 3 |
| Signal output | Blue | White | 2 |
| Not assigned | - | Yellow | 4 |


| Redundant versions |  |  |  |
| :--- | :--- | :--- | :--- |
| Signal | Lead wires | Cable | M12 |
| Supply voltage Ub 1 | Red | Green | 1 |
| GND 1 | Black | Brown | 3 |
| Signal output 1 | Blue | White | 2 |
| Supply voltage Ub 2 | Red/White | - | - |
| GND 2 | Black/White | - | - |
| Signal output 2 | Blue/White | Yellow | 4 |
| Shield | - | Shield | Shield |

Siedle Group

## Ordering <br> specifictions - <br> analog Versions

for Mobile Applications

## Ordering specifications <br> for Mobile Applications

Preferred types printed in bold:

- Delivery time up to 25 pcs. within 10 working days
- No low volume surcharge

Supply voltage
2: Supply voltage Ub $=5 \mathrm{~V}(4.5 . . .5 .5 \mathrm{~V})$
3: Supply voltage $\mathrm{Ub}=12 / 24 \mathrm{~V}(9.0 \ldots 34.0 \mathrm{~V})$

```
Output signal Supply voltage \(\mathrm{Ub}=5 \mathrm{~V}\)
1: \(0.25 \ldots . .4 .75 \mathrm{~V}\) ratiometric to supply voltage Ub
2: \(0.5 \ldots 4.5 \mathrm{~V}\) ratiometric to supply voltage Ub
Output signal supply voltage \(\mathrm{Ub}=12 / 24 \mathrm{~V}\)
2: \(4 . . .20 \mathrm{~mA}\) (only one-channel)
4: \(0.5 \ldots 4.5 \mathrm{~V}\)
5: 0.25...4.75 V
Output characteristics
1: Rising cw
2: Rising ccw
3: Crossed output channel 1 rising cw (partly redundant)
4: Crossed output channel 1 rising cw (fully redundant)
```

Other characteristics on request

Electrical connections
251: Cable 4-pol., 0,5 m unshielded, one-channel and partly redundant 252: Cable 4-pol., 1 m unshielded, one-channel and partly redundant 256: Cable 4-pol., 3 m unshielded, one-channel and partly redundant 260: Cable 4-pol., 5 m unshielded, one-channel and partly redundant 270: Cable 4-pol., 10 m unshielded, one-channel and partly redundant 401: Lead wires $3 \times \mathrm{L}=0,5 \mathrm{~m}\left(0,5 \mathrm{~mm}^{2}\right)$, single 411: Lead wires $4 \times \mathrm{L}=0,5 \mathrm{~m}\left(0,5 \mathrm{~mm}^{2}\right)$, partly redundant 421: Lead wires $6 \times \mathrm{L}=0,5 \mathrm{~m}\left(0,5 \mathrm{~mm}^{2}\right)$, fully redundant 551: M12 connector 4-pin, with cable $L=0.15 \mathrm{~m}$ unshielded, one-channe and partly redundant
Cable versions and assembled connectors on request

| R | F |
| :--- | :--- | :--- |
|  |  |
| Series |  |

4801: Elongated hole mounting for easy adjustment
4802: Round hole mounting

## Technical Data SSI Interface

| Type designations | RFC-48_ -214-41 _Supply voltage 5 VDC | RFC-48 _ -214-44 _Supply voltage 24 VDC (available 3rd quarter 2015) |  |
| :---: | :---: | :---: | :---: |
| Electrical Data |  |  |  |
| Protocol | SSI 13 bit (12 bit data + 1 stop bit) |  |  |
| Inputs | RS422 compatible, CLK lines via optocoupler galvanically isolated |  |  |
| Monoflop time (tm) | 16 |  | $\mu \mathrm{s}$ |
| Coding | Gray |  |  |
| Update rate (internal) | 2000 |  | kHz |
| Resolution across $360^{\circ}$ | 12 |  | bit |
| Measuring range | 360 |  | - |
| Maximum operational speed position marker | 30000 , higher speeds on request |  | min-1 |
| Independent linearity | typical 0,5 |  | $\pm \%$ FS |
| Repeatability | 0.2 |  | 。 |
| Hysteresis | 0.7, lower hysteresis on request |  | - |
| Temperaturfe error | 0.375 |  | $\pm \%$ FS |
| Supply voltage Ub | 5 (4.5 ... 5.5) | 24 (18...30) | VDC |
| Current consumption (w/o load) | typical 27 | typical 10 | mA |
| Reverse voltage | yes, supply lines |  |  |
| Short circuit protection | yes (ouput vs. supply voltage and GND) | yes (output vs. GND) |  |
| Ohmc load at outputs | $\geq 120$ |  | $\Omega$ |
| Max. clock rate | 1 |  | MHz |
| Insulation resistance (500 VDC) | $\geq 10$ |  | $\mathrm{M} \Omega$ |
| Cross-section cable | AWG 24, 0.25 |  | $\mathrm{mm}^{2}$ |
| Environmental Data |  |  |  |
| Operating temperature | -40...+85 |  | ${ }^{\circ} \mathrm{C}$ |
| MTTF (DIN EN ISO 13849-1 parts count method, w/o load, wc) | 141 | 102 | years |
| Functional safety | If you need assistance in using our products in safety-related systems, p | ease contact us |  |
| EMC compatibility $C \epsilon$ | EN 61000-4-2 electrostatic discharge (ESD) $4 \mathrm{kV}, 8 \mathrm{kV}$ <br> EN 61000-4-3 electromagnetic fields $10 \mathrm{~V} / \mathrm{m}$ <br> EN 61000-4-4 electrical fast transients (burst) 1 kV <br> EN 61000-4-6 I conducted disturbances, induced by RF fields 10 V eff. <br> EN 61000-4-8 Power frequency magnetic fields $30 \mathrm{~A} / \mathrm{m}$ <br> EN 55016-2-3 Noise radiation class B |  |  |



| Connection assignment |  |  |
| :--- | :--- | :--- |
| Signal | Cable Code 4__ | Connector M12 Code 531 |
| Supply voltage Ub | White | Pin 1 |
| GND | Brown | Pin 2 |
| Signal output SSI Data+ | Pink | Pin 6 |
| Signal output SSI Data- | Grey | Pin 5 |
| Clock input SSI CIk+ | Yellow | Pin 4 |
| Clock input SSI CIk- | Green | Pin 3 |
| Not assigned | Blue | Pin 7 |
| Not assigned | Red | Pin 8 |



When the marking of the position marker is pointing towards the cable, the sensor output is near the electrical center position.

Technical Data Incremental Interface

| Type designations | RFC-48_ _-2 _ _-5 _ _- _ _ - <br> Supply voltage 5 VDC | RFC-48_ _-2 _ _-530Supply voltage 24 VDC, TTL (available 3rd quarter 2015) | RFC-48_ _-2 _ _-534Supply voltage 24 VDC, HTL (available 3rd quarter 2015) |  |
| :---: | :---: | :---: | :---: | :---: |
| Electrical Data |  |  |  |  |
| Outputs | $\begin{aligned} & \mathrm{A}+/ \mathrm{A}- \\ & \mathrm{B}+/ \mathrm{B}- \\ & \mathrm{Z}+/ \mathrm{Z}- \end{aligned}$ |  |  |  |
| Level | RS-422, TTL-compatible | RS-422, TTL-compatible | HTL-compatible, Push-Pull |  |
| Length Z-pulse | 90 electrical, between 2 edges A / B |  |  | 。 |
| Pulses per revolution | 1024, other resolutions see page 12 |  |  | ppr |
| Counts per revolution (after quadrature) | 4096 |  |  |  |
| Option Low Speed <br> - Minimum edge separation <br> - Minimum input frequency of counter input <br> - Maximum operational speed | $\begin{aligned} & 8 \\ & 32 \\ & 1800 \end{aligned}$ |  |  | $\mu \mathrm{s}$ kHz $\mathrm{min}^{-1}$ |
| Option High Speed <br> - Minimum edge separation <br> - Minimum input frequency of counter input <br> - Maximum operational speed | $\begin{aligned} & 0.5 \\ & 500 \\ & 29000, \text { higher speeds on request } \end{aligned}$ |  |  | $\mu \mathrm{s}$ kHz $\mathrm{min}^{-1}$ |
| Measuring range | 360 |  |  | - |
| Independent linearity | typical 0.5 |  |  | $\pm \%$ FS |
| Repeatability | 0.2 |  |  | - |
| Hysteresis | 0.7, lower hysteresis on request |  |  | - |
| Temperature error | 0.375 |  |  | $\pm \% \mathrm{FS}$ |
| Supply voltage Ub | 5 (4.5 ... 5.5) | 24 (18...30) | 24 (18...30) | VDC |
| Current consumption (w/o load) | typical 20 | typical 10 | typical 10 | mA |
| Reverse voltage | yes, supply lines |  |  |  |
| Short circuit protection | yes, all outputs vs. GND and supply voltage | yes, all outputs vs. GND | yes, all outputs vs. GND and |  |
| Ohmic load at output | $\geq 120$ per channel A / B / Z | z 120 per channel A / B / Z | $\geq 750$ per channel A / B / Z | $\Omega$ |
| Insulation resistance (500 VDC) | $\geq 10$ |  |  | $\mathrm{M} \Omega$ |
| Cross-section cable | AWG 24, 0.25 |  |  | $\mathrm{mm}^{2}$ |
| Environmental Data |  |  |  |  |
| Operating temperature | -40...+85 |  |  | ${ }^{\circ} \mathrm{C}$ |
| MTTF (DIN EN ISO 13849-1 parts count method, w/o load, wc) | 183 | 122 | 122 | years |
| Functional safety | If you need assistance in using our products | afety-related systems, please co |  |  |
| EMC compatibility $C E$ | EN 61000-4-2 electrostatic discharge (ESD) <br> EN 61000-4-3 electromagnetic fields $10 \mathrm{~V} / \mathrm{m}$ <br> EN 61000-4-4 electrical fast transients (burst) <br> EN 61000-4-6 conducted disturbances, indu <br> EN 61000-4-8 Power frequency magnetic field <br> EN 55016-2-3 Noise radiation class B | 8 kV <br> by RF fields 10 V eff. <br> $\mathrm{A} / \mathrm{m}$ |  |  |


| Connection assignment |  |  |
| :--- | :--- | :--- |
| Signal | Cable <br> Code 4_- | Connector M12 <br> Code 531 |
| Supply voltage Ub | White | Pin 1 |
| GND | Brown | Pin 2 |
| A+ | Yellow | Pin 4 |
| A- | Green | Pin 3 |
| B+ | Pink | Pin 6 |
| B- | Grey | Pin 5 |
| Z+ | Blue | Pin 7 |
| Z- | Red | Pin 8 |



When the marking of the position marker is pointing away from the cable, the output is in the vicinity of the reference pulse (Z). Rotational direction CW: A leads before B.

Siedle Group

## Technical Data Incremental Interface



## Electrical Data

| Pulses per revolution | 1024 | 512 | 256 | 128 | ppr |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Counts per revolution (after quadrature) | 4096 | 2048 | 1024 | 512 |  |

Option Low Speed
$\begin{array}{lllllll}\text { - Minimal edge separation } & 8 & & & & \\ \text { - Minimum input frequency of counter input } & 32 & 32 & 32^{\star} & 32^{\star} & \mathrm{kHz}\end{array}$

- Maximum perational speed
- Maximum operational speed

1800
32
3600
7200

Option High Speed
$\begin{array}{lllllll}\text { - Minimal edge separation } & 0,5 & & & & \\ \text { - Minimum input frequency of counter input } & 500 & 500 & 500^{\star} & 105^{\star} & \mathrm{kHz}\end{array}$

- Minimum input frequency of counter input 500 500 $500^{*} \quad 105^{*} \mathrm{kHz}$
${ }^{\text {* }}$ - The requirement for the minimum input frequency of counter input is reduced at lower
speed (see below charts).



## Technical Data Incremental Interface

| Type designations | RFC-48_ _-2 _ _-556- $\qquad$ <br> Supply voltage $12 / 24$ VDC, open collector |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Electrical Data |  |  |  |  |  |
| Outputs | A- |  |  |  |  |
| Level | Open collector |  |  |  |  |
| Pulses per revolution | 1024 | 512 | 256 | 128 | ppr |
| Counts per reveolution (after quadrature) | 4096 | 2048 | 1024 | 512 |  |
| Minimum edge separation | 8 |  |  |  |  |
| Minimum input frequency of counter input | 32 | 32 | $32^{*}$ | 32* |  |
| Maximum operational speed | 580 | 3500 | 7200 | 14400 |  |
| Measuring range | 360 |  |  |  | - |
| Independent linearity | typical 0.5 |  |  |  | $\pm \%$ FS |
| Repeatability | 0.2 |  |  |  | - |
| Hysteresis | 0.7, lower hyseresis on request |  |  |  |  |
| Temperature error | 0.375 |  |  |  | $\pm \%$ FS |
| Supply voltage Ub | 12/24 (9...34) |  |  |  | VDC |
| Current consumption (w/o load) | typical 10 |  |  |  | mA |
| Reverse voltage | yes, supply lines |  |  |  |  |
| Short circuit protection | yes, all outputs vs. GND and supply voltage Ub |  |  |  |  |
| Load outputs vs. supply voltage Ub | 20 per channel |  |  |  | mA |
| Insulation resistance (500 VDC) | $\geq 10$ |  |  |  | $\mathrm{M} \Omega$ |
| Cross-section cable / lead wires | AWG 20, 0.5 |  |  |  | $\mathrm{mm}^{2}$ |
| Environmental Data |  |  |  |  |  |
| Operating temperature | -40...+85 |  |  |  | ${ }^{\circ} \mathrm{C}$ |
| MTTF (DIN EN ISO 13849-1 parts count method, w/o load, wc) | 83 |  |  |  | years |
| Functional safety | If you need assistance in using our products in safety-related systems, please contact us |  |  |  |  |
| EMC compatibility | ISO TR 10605 Packaging and Handling + Component Test: 8 kV, 15 kV ISO 11452-2 Radiated EM RF fields, absorber hall: $100 \mathrm{~V} / \mathrm{m}$ <br> ISO 11452-5 Radiated EM RF fields, stripline: $200 \mathrm{~V} / \mathrm{m}$ ISO 7637-2 pulse 1: SG 3, 2a, 2b, 3a, 3b, 4, 5: SG 4 CISPR 25 class 5 |  |  |  |  |

*) The requirements for the minimum input frequencies of counter input is reduced at lower speed (see page 12).


| Connection assignment |  |  |  |
| :--- | :--- | :--- | :--- |
| Signal | Cable | Code 4__ | Cable <br> Code 2 _- |
| Supply voltage Ub | Red | Connector M12 |  |
| GND | Black | White | Pin 2 |
| A | Blue | Brown | Pin 3 |
| B | Blue/White | Green | Pin 1 |



Rotational direction CW:
A leads before B

## Technical Data SPI Interface




| Connection assignment |  |
| :--- | :--- |
| Signal | Cable |
|  | Code 302 |
| Supply voltage Ub | Green |
| GND | Brown |
| MOSI / MISO | Yellow |
| SCLK | Grey |
| SS (slave select) | White |



When the marking of the position marker is pointing towards the cable, the sensor output is near the electrical center position.

Siedle Group

Ordering<br>specifictions -<br>digital Versions<br>- SSI<br>- Incremental<br>- SPI

## Ordering specifications

Preferred types printed in bold:

- Delivery time up to 25 pcs. within 10 working days
- No low volume surcharge


## Supply voltage Ub / Interface

4: Synchronous-Serial Interface (SSI)
5: Incremental Inrface A / B / Z
8: Serial Peripheral Interface (SPI)
Interface parameters for SSI Interface 4
11: $5 \mathrm{~V}(4.5 . .5 .5 \mathrm{~V})$ Supply voltage, output RS422 comp., Gray code, rising cw $12: 5 \mathrm{~V}(4.5 \ldots 5.5 \mathrm{~V})$ Supply voltage, output RS422 comp., Gray code rising ccw
41: $24 \mathrm{~V}(18 . . .30 \mathrm{~V})$ Supply voltage, output RS422 comp., Gray code, rising cw 42: 24 V (18... 30 V ) Supply voltage, output RS422 comp., Gray code rising ccw

Interface parameters for Incremental Interface 5 _ _
Low Speed Mode (minimum edge separation $8 \mu \mathrm{~s}$ )
$15: 5 \mathrm{~V}(4.5 \ldots 5.5 \mathrm{~V})$ supply voltage, output RS422, TTL- compatible 35: $24 \mathrm{~V}(18 \ldots 30 \mathrm{~V})$ supply voltage, output RS422, TTL-compatible 39: $24 \mathrm{~V}(18 \ldots 30 \mathrm{~V}$ ) supply voltage, output HTL-compatible, Push-Pull 56: 12/24V ( 9 ... 34 V ) supply voltage, output low side, open collector High Speed Mode (minimal edge separation $0,5 \mu \mathrm{~s}$ ) 10: $5 \mathrm{~V}(4.5 \ldots . .5 .5 \mathrm{~V})$ supply voltage, output RS422, TTL-compatible $30: 24 \mathrm{~V}(18 \ldots 30 \mathrm{~V})$ supply voltage, output RS422, TTL-compatible 34: $24 \mathrm{~V}(18 \ldots 30 \mathrm{~V})$ supply voltage, output HTL-compatible, Push-Pull UVW signals instead of $A B Z$ signals for motor commutation on request Absolute position at Power On (Power on Burst) on request

Interface parameters for SPI Interface 8 _ -
31: 5 V (4.5...5.5 V) Supply voltage, Binary code, rising cw
Electrical connections
SSI / Incremental:
432: Cable 8-pol, 1.0 m , shielded
436: Cable 8-pol, 3.0 m , shielded
440: Cable 8-pol, 5.0 m , shielded
450: Cable 8-pol, 10.0 m , shielded
531: Connector M12x1 8-pol with cable, $\mathrm{L}=0.15 \mathrm{~m}$, shielded
Incremental Open Collector:
252: Cable 4-pol., 1 m , unshielded
256: Cable 4-pol., 3 m , unshielded
260: Cable 4-pol., 5 m, unshielded
270: Cable 4-pol., 10 m , unshielded
411: Lead wires $4 \times L=0.5 \mathrm{~m}$
551: Connector M12x1 4-pin with cable, $\mathrm{L}=0.15 \mathrm{~m}$, unshielded SPI

302: Cable 5-pol. 1.0 m , shielded
Cable versions and and assembled connectors on request

12: 12 bit
Other resolutions on request
Resolution Incremental Interface 5
12: $1024 \mathrm{ppr}-4096$ counts (after quadrature)
11: 512 ppr - 2048 counts (after quadrature)
10: 256 ppr - 1024 counts (after quadrature)
09: 128 ppr - 512 counts (after quadrature)
Other resolutions on request
Resolution SPI Interface 8 _ _
14: 14 bit

Interface
2: digital Interface

## Mechanical version

4801: Elongated hole for easy adjustment
4802: Round hole mounting

## Technical Data <br> CANoper

| Type designations | RFC-48__-214-6__-_ _ CANopen <br> (available 3rd quarter 2015) |  |
| :---: | :---: | :---: |
| Electrical Data |  |  |
| Measured variables | Position and speed |  |
| Measuring range | 360 | - |
| Measurement range speed | 0... 25000 | min-1 |
| Number of channels | 1/2 see ordering specifictions |  |
| Output signal / protocol | CANopen protocol to CiA DS-301 V4.2.0, Device profile DS-406 V3.2 Encoder Class C2, LSS services to CiA DS-305 V1.1.2 |  |
| Programmable parameter | Position, speed, cams, working areas, rotating direction, scale, offset, node-ID, baud rate |  |
| Node-ID | 0 ... 127 (default 127) |  |
| Baud rate | $50 . . .1000$ see ordering specifications | kBaud |
| Resolution across $360^{\circ}$ (position) | 14 | Bit |
| Resolution speed | $360 / 2^{14} \approx 0,022$ | \%/ms |
| Update rate | 1 | kHz |
| Independent linearity | 0.5 | $\pm \% \mathrm{FS}$ |
| Repeatability | 0.36 | 。 |
| Hysteresis | 0.36 | - |
| Temperature error | 0.2 | $\pm \% \mathrm{FS}$ |
| Supply voltage Ub | 12/24 (8 ... 34) | VDC |
| Current consumption (w/o load) | < 100 | mA |
| Reverse voltage | yes, supply lines |  |
| Short circuit protection | yes, output vs.GND and supply voltage Ub (up to 40 VDC) |  |
| Overvoltage protection | $<45$ (permanent) | VDC |
| Insulation resistance (500 VDC) | $\geq 10$ | $\mathrm{M} \Omega$ |
| Cross-section cable | AWG 20, 0.5 | $\mathrm{mm}^{2}$ |
| Bus termination internal | 120, optional, see ordering specifications | $\Omega$ |
| Environmental Data |  |  |
| Operation temperature | $-40 \ldots+105$ | ${ }^{\circ} \mathrm{C}$ |
| MTTF (DIN EN ISO 13849-1 parts count method, w/o load, wc) | one channel: 71 / two channel: 58 | years |
| Functional safety | If you need assistance in using our products in safety-related systems, please contact us |  |
| EMC compatibility | ISO TR 10605 Packaging and Handling + Component Test: 8 kV ISO 11452-2 Radiated EM RF fields, Absorberhall: $100 \mathrm{~V} / \mathrm{m}$ ISO 11452-5 Radiated EM RF fields, Stripline: 200 V/m CISPR 25 Radiated emission class 3 ISO 7637-2 pulse 1, 2a, 2b, 3a, 3b, 4 (24 V systems), 5: SG 5 ISO 7637-3 Transient transmission: SG 4 |  |

Connection assignment

| Signal | Cable <br> Code 2 __ | Connector M12 <br> Code 511 |
| :--- | :--- | :--- |
| Supply voltage Ub | White | Pin 2 |
| GND | Brown | Pin 3 |
| CAN_H | Yellow | Pin 4 |
| CAN_L | Green | Pin 5 |
| CAN Shield | Bare | Pin 1 |


| Signal | Cable <br> Code 432 |
| :--- | :--- |
| Supply voltage Ub | White and Red |
| GND | Brown and Blue |
| CAN_H IN | Yellow |
| CAN_L IN | Green |
| CAN_H OUT | Pink |
| CAN_L OUT | Grey |
| Shield | Bare |



When the marking of the position marker is pointing towards the cable, the sensor output is near the electrical center position.

Siedle Group

## Ordering

specifications


# novotechnik <br> Siedle Group 

Position marker


# novotechnik 

Siedle Group

Position marker


## Position marker

## Working distances (in mm)

Sensor series

|  | P01 | P02 | P03 | P04 | P07 | P08 |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Analog (voltage / current), SPI | $0 \ldots 1.5$ | $0 \ldots 4$ | $0 \ldots 1.5$ | $0 \ldots 4$ | $0 \ldots 1.5$ | $0 \ldots 4$ | $0 \ldots 4$ |
| SSI / incremental | - | $0 \ldots 1.4$ | - | $0 \ldots 1.4$ | - | $0 \ldots 1.4$ | $0 \ldots 1.4$ |
| CANopen single | - | $2.3 \ldots 5$ | - | $2.3 \ldots 5$ | - | - | $2.3 \ldots 5$ |
| CANopen redundant | - | $1.9 \ldots 4.5$ | - | $1.9 \ldots 4.5$ | - | $1.9 \ldots 4.5$ | $1.9 \ldots 4.5$ |

Lateral magnet offset (will cause additional linearity error): The angle error, which is caused by radial displacement of sensor and position marker depends on the used position marker or magnet type.

Additional error ( ${ }^{\circ}$ ) at radial displacement

|  | Magnet Type 1 | Magnet Type 2 |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | 0.5 mm | $\mathbf{1 ~ m m}$ | 2 mm | 0.5 mm | $\mathbf{1 m m}$ | $\mathbf{2 ~ m m}$ |
| Analog single | 0.4 | 1.1 | 3.5 | 1.4 | 3.7 | - |
| SPI | 0.4 | 1.1 | 3.5 | 1.4 | 3.7 | - |
| CANopen single | 0.4 | 1.1 | 3.5 | - | - | - |
| Analog redundant | 0.7 | 1.8 | 5.2 | 2.5 | 6.4 | - |
| CANopen redundant | 0.7 | 1.8 | 5.2 | - | - | - |
| SSI, incremental | 0.4 | 0.7 | 2.2 | - | - | - |



## Mounting instructions Z-RFC-P03 / Z-RFC-P04

- In general, we recommend mounting on not magnetizable materials, otherwise the stated working distances can change
- If the shaft is magnetizable please keep sufficient distance
- When the magnet is mounted in the shaft, the shaft may not
be magnetizable
- If the magnet is axially fixed on a magnetizable shaft the working distances reduces by approximately 20 \%


Connector System M12



|  | $\begin{aligned} & 2=\text { White } \\ & 3=\text { Blue } \\ & 4=\text { Black } \end{aligned}$ | M12x1 Mating female connector, 4-pin, straight, A-coded, with molded cable, shielded, IP67, open ended |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Connect | Plastic PA |  |
|  |  | Cable sh | $\begin{aligned} & \text { PUR; } \varnothing=m \\ & -25^{\circ} \mathrm{C} \ldots+80 \\ & -50^{\circ} \mathrm{C} \ldots+80 \end{aligned}$ |  |
|  |  | Wires | PP, 0.34 mm |  |
| IP67 UL |  | Length | Type | P/N |
|  |  | 2 m | EEM 33-32 | 005600 |
|  |  | 5 m | EEM 33-62 | 005609 |
|  |  | 10 m | EEM 33-97 | 005650 |



|  | $\begin{aligned} & 2=\text { White } \\ & 3=\text { Blue } \\ & 4=\text { Black } \end{aligned}$ | M12×1 Mating female connector, 4-pin, straight, A-coded, with molded cable, not shielded, IP67, open ended |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Connec | Plastic PA |  |
|  |  | Cable s | $\begin{aligned} & \text { PUR; } \varnothing=m \\ & -40^{\circ} \mathrm{C} \ldots+85 \end{aligned}$ | 6 mm , |
|  |  | Wires | PP, 0.34 mm |  |
|  |  | Length | Type | P/N |
| $1 P 67$ UL |  | 2 m | EEM 33-35 | 056135 |
|  |  | 5 m | EEM 33-36 | 056136 |
|  |  | 10 m | EEM 33-37 | 056137 |



| Pin assignment $4$ | $\begin{aligned} & 1=\text { White } \\ & 2=\text { Brown } \\ & 3=\text { Green } \end{aligned}$ | M12x1 Mating female connector, 8-pin, straight, A-coded, with molded cable, not shielded, IP67, open ended |  |  |
| :---: | :---: | :---: | :---: | :---: |
| $\left.\begin{array}{c} 3\left(\begin{array}{lll} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 \end{array}\right)^{6} 7 \\ 2 \\ 8 \end{array}\right]$ | 5 = grau | Connector housing | Plastic PA |  |
|  | $\begin{aligned} & 6=\text { rosa } \\ & 7=\text { Blue } \\ & 8=\text { Red } \end{aligned}$ | Cable sheath | PUR; $\varnothing=$ max. 8 mm , $-25^{\circ} \mathrm{C} . . .+80^{\circ} \mathrm{C}$ (moved) $-50^{\circ} \mathrm{C} . .+80^{\circ} \mathrm{C}$ (fixed) |  |
|  |  | Wires | PP, $0.25 \mathrm{~mm}^{2}$ |  |
|  |  | Length | Type | P/N |
|  |  | 2 m | EEM 33-86 | 005629 |
|  |  | 5 m | EEM 33-90 | 005635 |
|  |  | 10 m | EEM 33-92 | 005637 |
| Pin assignment |  | M12x1 Mating female connector, 4-pin, straight, A-coded, with coupling nut, screw termination, IP67, not shielded |  |  |
|  |  |  |  |  |  |
|  |  | Connector housing | $\begin{aligned} & \text { Plastic PBT } \\ & -25^{\circ} \mathrm{C} . . .+90^{\circ} \mathrm{C} \end{aligned}$ |  |
|  |  | For wire gauge | 6... 8 mm , max. $0,75 \mathrm{~mm}^{2}$ |  |
|  |  | Type EEM 33-88, P/ | N 005633 |  |

## IP67

Siedle Group

Connector System M12




M12x1 Mating female connector, 5-pin, straight, A-coded, with coupling nut, screw termination, IP67, shieldable, CAN bus

| Connector <br> housing | Metal <br>  <br> For wire gauge |
| :--- | :--- |

Type EEM 33-73, P/N 005645


M12x1 Mating female connector, 5-pin, angled, A-coded, with coupling nut, screw termination, IP67, shieldable, Screw ter

| Connector <br> housing | Metal <br> $-40^{\circ} \mathrm{C} \ldots+85{ }^{\circ} \mathrm{C}$ |
| :--- | :--- |
| For wire gauge | $6 \ldots \mathrm{~mm}$, max. $0.75 \mathrm{~mm}^{2}$ |
| Type EEM $33-75, \mathrm{P} / \mathrm{N} 005646$ |  |



Connector System<br>M12



| Pin assignment | $\begin{aligned} & 1=n . c . \\ & 2=n . c . \\ & 3=\text { n. c. } \\ & 4=\square \text { Widerstand } \\ & 5=\square 120 \Omega \end{aligned}$ | M12x1 terminating resistor, 5-pin, A-coded, IP67, $120 \Omega$ resistance, CAN-Bus |
| :---: | :---: | :---: |
|  |  | Connector housing PUR |
|  |  | Temperature range $\quad-25^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}$ |
|  |  | Type EEM 33-47, P/N 056147 |
| IP67 ${ }^{\circ}$ |  |  |



| Connector housing | PUR |
| :---: | :---: |
| Cable sheath | PUR $\varnothing=$ max. 7.2 mm , $-25^{\circ} \mathrm{C} . . .+85^{\circ} \mathrm{C}$ (moved) |
| Wiires | $\begin{aligned} & \text { PP } 2 \times 0.25 \mathrm{~mm}^{2} \\ & +2 \times 0.34 \mathrm{~mm}^{2} \end{aligned}$ |
| Length | Type P/N |
| 2 m | EEM 33-41 056141 |
| 5 m | EEM 33-42 056142 |
| 10 m | EEM 33-43 056143 |


Suited for applications in dragchains

| M12x1 Mating female connector, 5-pin, |
| :--- |
| straight, A-coded, with molded cable, |
| IP68, CAN-Bus |
| Connector housing | PUR | Cable sheath | PUR; $\varnothing 7.2 \mathrm{~mm}$ <br> $-25^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}$ <br> (fixed) |  |
| :--- | :--- | :--- |
| Length | Type | P/N |
| 5 m | EEM $33-44$ | 056144 |

Note: The protection class is valid only in locked position with its plugs. The application of these products in harsh environments must be checked in particular cases.

Siedle Group

Multifunctional<br>Measuring Device with Display

Series MAP4000



# novotechnik 

Siedle Group

## Connecting options

on request


# novotechnik 

Siedle Group

Novotechnik U.S., Inc. 155 Northboro Road

Southborough, MA 01772
Phone 5084852244
Fax 5084852430
info@novotechnik.com
www.novotechnik.com
© 06/2015
Änderungen vorbehalten


## Molex Mini Fit jr

- Customized length and lead wires
- 3-, 4- and 6-pol. versions
- on request



## Molex Mini Fit

- Customized length and lead wires
- 3-, 4-, 6- and 8-pol. versions
- on request

